skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paul, Bidisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development. 
    more » « less
  2. Corticosteroids are critical for development and for mediating stress responses across diverse vertebrate taxa. Study of frog metamorphosis has made significant breakthroughs in our understanding of corticosteroid signaling during development in non-mammalian vertebrate species. However, lack of adequate corticosterone (CORT) response genes in tadpoles make identification and quantification of CORT responses challenging. Here, we characterized a CORT-response genefrzb(frizzled related protein) previously identified inXenopus tropicalistadpole tail skin by an RNA-seq study. We validated the RNA-seq results that CORT and not thyroid hormone inducesfrzbin the tails using quantitative PCR. Further, maximumfrzbexpression was achieved by 100-250 nM CORT within 12-24 hours.frzbis not significantly induced in the liver and brain in response to 100 nM CORT. We also found no change infrzbexpression across natural metamorphosis when endogenous CORT levels peak. Surprisingly,frzbis only induced by CORT inX. tropicalistails and not inXenopus laevistails. The exact downstream function of increasedfrzbexpression in tails in response to CORT is not known, but the specificity of hormone response and its high mRNA expression levels in the tail renderfrzba useful marker of exogenous CORT-response independent of thyroid hormone for exogenous hormone treatments andin-vivoendocrine disruption studies. 
    more » « less
  3. Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Few studies have examined the impact of heat stress on reproduction in Antarctic terrestrial arthropods, specifically how brief, extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the impact on fertility declines with time when the mites are allowed to recover under less stressful conditions, suggesting that the negative effects are transient. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial effects on local populations of Antarctic arthropods. 
    more » « less
  4. Abstract Corticosteroids are so vital for organ maturation that reduced corticosteroid signaling during postembryonic development causes death in terrestrial vertebrates. Indeed, death occurs at metamorphosis in frogs lacking proopiomelanocortin (pomc) or the glucocorticoid receptor (GR; nr3c1). Some residual corticosteroids exist in pomc mutants to activate the wild-type (WT) GR and mineralocorticoid receptor (MR), and the elevated corticosteroids in GR mutants may activate MR. Thus, we expected a more severe developmental phenotype in tadpoles with inactivation of 21-hydroxylase, which should eliminate all interrenal corticosteroid biosynthesis. Using CRISPR/Cas9 in Xenopus tropicalis, we produced an 11-base pair deletion in cyp21a2, the gene encoding 21-hydroxylase. Growth and development were delayed in cyp21a2 mutant tadpoles, but unlike the other frog models, they survived metamorphosis. Consistent with an absence of 21-hydroxylase, mutant tadpoles had a 95% reduction of aldosterone in tail tissue, but they retained some corticosterone (∼40% of WT siblings), an amount, however, too low for survival in pomc mutants. Decreased corticosteroid signaling was evidenced by reduced expression of corticosteroid-response gene, klf9, and by impaired negative feedback in the hypothalamus-pituitary-interrenal axis with higher messenger RNA expression levels of crh, pomc, star, and cyp11b2 and an approximately 30-fold increase in tail content of progesterone. In vitro tail-tip culture showed that progesterone can transactivate the frog GR. The inadequate activation of GR by corticosterone in cyp21a2 mutants was likely compensated for by sufficient corticosteroid signaling from other GR ligands to allow survival through the developmental transition from aquatic to terrestrial life. 
    more » « less